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COMPARISON THEOREMS FOR NON-STATIONARY PRESSURE FILTRATION PROBLEMS* 

A.N. GAIFDTDINOV and N.D. YAKIMOV 

Comparison theorems are stablished for problems concerned with spatial 

pressure filtration under an elastic flow regime. In the theorems proposed 
here the nature of the change in the solution (in the head, the pressure, 
the rate of filtration and the flow rate) where there are certain changes 

in the boundary and initial conditions and the form of certain bounding 

surfaces is investigated within the framework of the accepted model. An 
example of the application of the theorems is given. The theoremsobtained 
also hold for planar problems. 

1. Formulation of the problem. The problem of spatial pressure filtration is con- 

sidered. Itisassumed that the liquid and the qround are weakly compressible and that the 

equation /l, 2/ 
div (x grad h) = @h/at (1.1) 

holds in the domain LI in the case of a pressure head h(z, ~,%t). 

Here, 0 is the coefficient of elastic capacity, y is the density of the liquid and *=5 

x (I, Y, 2) is the coefficient of filtration, which is a continuously differentiable function in 

Q and does not vanish or become infinite in a. 

It is assume that the region of flow is bounded by permeable surfaces Sr on which h= 

Iik (I). k-; i, 2, . . ., , (j is the number of surfaces with different pressure heads) and surfaces I,," 
on which i)hldn= ~,,,(t),m= i,&....i (the internal normal). In particular, theremaybeimper- 

meable surfaces among the L,. if s,(f)=0 for certain values of m. It is assumed that each 

surface L,only comes into contact with surfaces Sk and is a surface of the Lyapunov type 
while the surfaces Sk consist of a finite number of surfaces of the Lyapunov type. The flow 

region is bounded but may be multiply connected. The function h(t,y,z,1) is assumed to be 

continuous in 3 and to have continuous partial derivatives with respect to the variables r,y 

and z of the first order in P/L's,, of the second order in Q and a continuous first deriv- 

ative with respect to t. 
For the correct formulation of the boundary value problem it is necessary to specify the 

initial pressure head distribution 

h (t, Y. 2, 0) = cp (I, I, I), (18 Y, 2) E a 

where cp(z.y,z) is a continuous function in h. Since a continuous solution of the problem is 

sought, the followingcompatibilityconditions must be satisfied: 

q (I* I/, 2) = Hk (0). (t. Y, 2) E Sk. 

Here and everywhere subsequently, k= 1,2....,j; m= 1.2, . . ..l. 

2. Comparison theorems. These theorems presuppose a comparison of the solutions of 

two problems which differ in some way. It is assumed that the solutions of both the initial 

and the modified problem exists and that they satisfy the conditions which have been enumer- 

ated in Sect.1. In the following treatment the difference in the values of any quantity in 

the case of the initial and modified solutions is denoted by the square brackets. 

The forcing-in concept which is used in the theorems means that the pointsofthemodified 
surface lie within the initial flow region. By replacing a certain surface by a surface of 

another type, we mean the replacement of the boundary conditions on a given part of the 

boundary of a region. The expression "the values of the pressure head increase", which is 

encountered in the formulations of the theorems, denotes that [h(t)l>O. Other analogous ex- 

pressions are to be understood in the same way. 

Theorem 1. In the formulations of the problems under consideration, supposeonly m(z,Y,z) 

and ifk (1) possibly are different and I~(z~y.z)]>O in a.IHr(f)]>O in a certain interval of 
time [r,.:,l(1r>O), and Isk(#)]=O at the remaining instants of time. Subject to these con- 

ditions, the solutions of the problems being compared are identically the same at a certain 

instant of time 7 if and only if [m]rO in si and [Rk(t)]rO when O<:<r. If, at the 

instant ~70 the solutions are not identically the same, then, when the conditions of the 
theorem are satisfied: 
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a) the values of the pressure head (and the pressure) increase 
amount: 

in Q on L, by a limited 

bt on those surfaces &where [flr(~)j= 0, the values of the outgoing velocities increase 
while the incoming velocities fall off in magnitude or become outqoing velocities. Of course, 
Theorem 1 enables us to consider the changes in the initial distribution of the pressure head 
cp(+,u,z) separately (or the changes inthe values of Hk[i)) separately, if we put l~~(;)l~i) for 
any t>0 (or-, correspondingly, Icp]~o in P). 

Theorem 2. The solutions of problems are considered whose formulations can only differ 
in 9 f*. Y. 2) and %I, tn and Irp f~,br,zJl $0 in G, fo,;f*)]> 0 in a certain interval of time 
Its, rrl @s 3 0) while, at the remaining instant of time, i%(01=0. Under these conditions, the 
solutions of the problems being compared with ider&tically the same at a certain instant of 
time 7 if an only if [cpl=O in 5 and Ia,,,(~ when O$:<r. If, at an instant _(>O, the 
solutions are not identicaily the same then, when the above-mentioned conditions are satisfied: 

a) the values of the pressure head (or pressure) decline in Ron L,, 
b) the values of the inflow velocities on the surfaces Sk increase while the outflow 

velocities fall off in magnitude or become outflow velocities. 
Other conclusions can be drawn when there are additional data in the formulation of the 

problem. For example, let the value of the pressure head on one of the boundary surfaces Sk 
in a certain interval of time [O,T] be the greatest (smallest) of the pressure head values 
in 52. We shall call this surface the greatest (least) pressure head surface. The following 
theorem is formulated under the assumption that just one of the above-mentioned surfacesexist 
in the interval of time lO,TJ. Certain sufficient conditions for satisfying this requirement 
will be presented in Sect.3. 

Below the notation applying to the initial solution is labelled with a single asterisk 
while the notation referring to the modified solution is labelled with two asterisks. 

Theorem 3. When the surface under the greatest (least) stress is forced in and alsowhen 
a part of the surfaces Sk or L, is replaced by the surface under the gxeatest (least) stress, 
the following holds under the assumption that IV (zr, y, 211 > 0 ([cp (I, y. 111 < 0) for any I = (0. 27: 

a) the values of the pressure head and pressure increase (decrease) in Q** on L, 
b) on the unmodified parts of the surfaces Sk&he valuesofthe outflow (inflow) velocities 

increase while the inflow (outflow) velocities fall off in magnitude or become outflow (inflow) 
velocities. In particular, the values of the velocity on the unmodified part of the surface 
of greatest (least) pressure head decrease while the velocities and flow rate through the 
unmodified part of the surface with the smallest (greatest) pressure head, if there is one, 
increase. 

Remark. Under the conditions of Theorems 1 and 2, when there are surfaces under the 
greatest or least stress, it is possible in such a manner to obtain additional affirmation 
regarding the change in the velocities on these surfaces and the flow rates (including the 
total flow rate) through these surfaces. 

Proof of the theorems. The theorems are proved by an investigation of the difference 
h,= {hl in the intersection Q0 of the domains Q* and Q**, In Qor the function h, satisfies 
Eq.(l.l) and possesses the same properties of continuity and differentiability as h. 

Let us consider the proof of Theorem 1. According to the conditions of the theorem, the 
function ho. satisfies the following boundary and initial conditions: ahdan = 0 on L,, for any 
t>O; h,>O when t E I:,, :,l and h,= 0 on skat the remaining instants of time; h, (2. Y,c~) = 
'PO = (VI > 0 in soEa* &-a*. 

We will first show that ho > 0 in ,& at any r~f, where I- [O,T] and t is a certain 
instant of time. In fact, if there are negative values of hO in the time interval I, the 

function h,, has a negative minimum in a, for t=I. It follows from the strong maximum 
principle for second-order parabolic equations /3/ that this minimum is only attained on the 
boundary of the domain Q,at a certain tE[O,Tl and at the initial instant in 5,. Since hog+0 
on the surfaces St and 'PO > 0 in s,,, we arrive at the conclusion that the point where the 
minimum is attained must only be located on the surfaces L,. All of the conditions of Theorem 
1 regarding the sign of the oblique derivative (the SOD theorem) of /4/ are satisfied. Accord- 
ing to this theorem ahJan> 0 at the point where the minimum is attained. This, however, 
constradicts the conditions of the theorem. This means that there cannot be negative minimum 
of h,and h,>O in 3, when tel. 

Let us assume that ho(z,y,qr)==‘O. Then, from the strong maximum principle, it follows 
that, when account is taken of the condition ho,0 in PO, h,=O in Go when tea (O,+). Whence, 
taking into account the continuity of the function ho, we have 'PI= 0 in si, and [ek (t)l=0 when 
t E I. It is known that, when the last two identities are satisfied ho (2, Y, 1.7) = 0 in -Q, /4/, 
that is, the solutions are identically the same as the instant 7 if and only if [cpl=O in a, 



and IHt(t)lti 0 when tef. 
NOW, at the instant r, let the solutions not be identically the same. Then, by applying 

the strong maximum principle and the SOD theorem, it is possible to write the inequalities 

"'hi {,z;;;z;I1 mi;; ~~::'"]~=r"l!~~~~fl~),' mar{ ma= "_" lna:[Hc @,I[ 
I, I 0 b (2, v. Z)cU. ’ 1:‘ Cl I 

from which assertion a) of the theorem follows. On these Sk SUrfdCeS where IHk(T)] = 0. a minimum 
of the function h,is attained and, according to the SOD theorem, ahddn > 0 on these surfaces. 

At those points of these surfaces where the velocities for the initial problem are outgoing 

(the projection of the velocity on the normal u,,* is negative), the condition d/&*/da >o is 

satisfied, whence, when account is taken of the inequality ahdan > 0, we have there that 
ah**lan > 0. This means that l+** < 0. that is, velocities which are outgoing for the initial 

problem remain outgoing in the case of the modified problem. The difference in the magnitude 

of the velocities at these points can then be written in the form Iv]= xdhO/an whence the 

assertion regarding the change in the outgoing velocities follows. By similar reasoning it 

can be shown that some of the ingoing velocities for the initial problem can become outgoing 

in the case of the modified problem and when this happens, the magnitudes of the velocities 

which have remained ingoing are reduced. 

Theorem 1 is proved. 

Theorems 2 and 3 are proved using analogous arguments and taking account of the fcllowing: 

in Theorem 2 we have h,zzO on the surfaces Sk, ahdan> when I E [Is, ftl and dhddn = il on l.,, at 

the remaining instants of time and ~~60 in??,. In Theorem 3, there are the conditions 

TO> O(cp,,< 0) in H** and h, > O(h, c: 0) when IE (0,Tl on the forced-in part of the surface 

under the greatest (least) stress as well as on those parts of the surfaces Sk and L, which 

have been replaced by the surface of greatest (least) stress. 

3. Certain sufficient conditions for the applicability of Theorem 3. We now 
present certain sufficient conditions which ensure the existence of surfaces of greatest and 

least stress. 

Proposition 1. Let the following conditions be satisfied: 

1) for a certain value of the index p 

CF (t9 8, 2) < H, (O)inQ, on L,,. 

2) H~(f)~Hp(~),k#p,t~(O,Tj,and,moreover,atanyt~(O,T], the identity equalityisimposs- 

ible simultaneously for allvaluesof k. 

3) %I (f),> 0, H,' (0 > 0. f E IO, Tl. 

Then, at any instant of time f E IO, Tl the surface S, is the surface of greatest stress. 

Proposition 2. At any instant of time fE[O,T], the surface S, will be the surface of 

least stress if the conditions of Proposition 1 are satisfied with the opposite signs in the 

inequalities. 
For the proof of Proposition 1 let us consider an arbitrary time interval I = 10, Tj, where 

T<T and introduce the function 

M (r) = mar h (z, y,z, f) 
(X.YIZHL 1=1 

According to the strong principle of a maximum, thevalue M(r) can only be attained on the 

boundary dQ of the domain B and at the initial instant in ai. According to conditions 1 and 

2 and the compatibility condition 

and, according to the SOD theorem and the first inequality from condition 3, the value M (T) 
cannot be attained on thesurfaces L,v, at any fcz(O,~]. Then, by further taking account of con- 

dition 2 and the second inequality from condition 3, we may write 

Since the instant of time r is arbitrary, this means that, for any ;E 10, f, the value 

of the stress on the surface S,is greatest in a. 
Proposition 2 is proved in a similar manner. 

Finally, conditions 3 in the propositions are not necessary and, for example, when con- 

ditions 1 and 2 and the first of the inequalities from condition 3 of Proposition 1 are 
satisfied, the surface S, may be the surface of greatest stress even when there is a decrease 
in BP(f) provided that this decrease is sufficiently slow. 

4. An example of the application of the theorems. The theorems which have been 

proved can be used both for a theoretical investigation of the solutions of problems as well 
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as with the aim of obtaining estimates of the required solution in terms ofaknown (or simpler) 
solution. 

As an example, let us consider the planar-parallel flow of a liquid to an aperture S in 
a homogeneous layer bounded by an arbitrary recharge contour L. It is assumed that Eq.(l.l) 
holds for the pressure head h(r,y,t) in 0 and h=f(t) on S, h== ff>H~ on L, where HO= maxlf(l). 
Let us now introduce into the treatment a further two problems with the same boundary con- 
ditions but which are solved in circular regions, one of which contains the region Qwithin 
it while the other lies wholly within I). For, the initial pressure head distribution in each 
domain we shall take the solution which corresponds to the stationary problem when h=!(O) on 

S. Then, from the theorems of Polozhii /5/ and Theorem 3 for the pressure head and the flow 
rate of the aperture Q at any t>,O, we have the estimates 

he (I* U* 1) <h (2, Y> 1) <hr (2, Y, i). Qa <Q < Q, 

Here, the indices r and R refer to the solution of the problem in the internalandexternal 
circle respectively. In the case of a central aperture in a circular layer it is possible to 
obtain computational formulae for the functions hr and h, /6, I/ from which the above-mentioned 
estimates follow. 

The estimates can be significantly simplified if use is made of the solution of the 
problem on the inflow of liquid towards the aperture ignoring the compressibility of the 
liquid and the ground. 

Let f'(l)<O. h+(r,y,t) be the solution of the equation Ah= 0 with the above-mentioned 
boundary conditions and let h++(z,y) be the solution of this equation when h=Ho on S. The 
estimates 

h,,+<h<'$++, QR+<Q (4.1) 
are then valid. 

In fact, since the function ah/a; also satisfies Eq.(l.l_),. from the principleofa maximum, 
taking into account the condition 1' (1) < 0 , we have that ah/at<0 in 9. This means that the 
function ho = h-h+ will satisfy Poisson's equation with a non-positive right-hand side at 
each instant of time whence, according to the maximum principle for elliptic equations /3/, 
h,>O in G. Further, by taking account of Theorem 3, we have a lower estimate for the 
pressure head and the flow rate. The upper estimate for the pressure head follows immediately 
from Theorems 1 and 3. 

The solutions hR+ and h,++ have a simple form for any arrangement of the aperture, and 
the estimates (4.1) can therefore be readily written out in elementary form. 

Similar estimates can also be obtained in the case when 1'(:)>0. 
Other examples of the application of the theorems are also possible. 
We note that the theorems which have been formulated are a generalization of the com- 

parison theorems of Polozhii /5/ to the case of spatial filtration of a compressible liquid 
in compressible ground. 
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